1863. 找出所有子集的异或总和再求和

一个数组的 异或总和 定义为数组中所有元素按位 XOR 的结果;如果数组为 ,则异或总和为 0

  • 例如,数组 [2,5,6]异或总和2 XOR 5 XOR 6 = 1

给你一个数组 nums ,请你求出 nums 中每个 子集异或总和 ,计算并返回这些值相加之

注意:在本题中,元素 相同 的不同子集应 多次 计数。

数组 a 是数组 b 的一个 子集 的前提条件是:从 b 删除几个(也可能不删除)元素能够得到 a

示例 1:

输入:nums = [1,3]
输出:6
解释:[1,3] 共有 4 个子集:
- 空子集的异或总和是 0 。
- [1] 的异或总和为 1 。
- [3] 的异或总和为 3 。
- [1,3] 的异或总和为 1 XOR 3 = 2 。
0 + 1 + 3 + 2 = 6

示例 2:

输入:nums = [5,1,6]
输出:28
解释:[5,1,6] 共有 8 个子集:
- 空子集的异或总和是 0 。
- [5] 的异或总和为 5 。
- [1] 的异或总和为 1 。
- [6] 的异或总和为 6 。
- [5,1] 的异或总和为 5 XOR 1 = 4 。
- [5,6] 的异或总和为 5 XOR 6 = 3 。
- [1,6] 的异或总和为 1 XOR 6 = 7 。
- [5,1,6] 的异或总和为 5 XOR 1 XOR 6 = 2 。
0 + 5 + 1 + 6 + 4 + 3 + 7 + 2 = 28

示例 3:

输入:nums = [3,4,5,6,7,8]
输出:480
解释:每个子集的全部异或总和值之和为 480 。

提示:

  • 1 <= nums.length <= 12

  • 1 <= nums[i] <= 20

题解

class Solution {
    public int subsetXORSum(int[] nums) {
        int length = nums.length;
        int count = 0;
        if(length == 1){
            return nums[0];
        }
        int XORSum = 0;
        int lengthNum = 1;
        while(count < length){
            lengthNum <<= 1;
            count++;
        }
        for(int i = 0; i < lengthNum; i++){
            int numTemp = i;
            int index = 1;
            int XORTemp = 0;
            while(numTemp > 0){
                if((numTemp & 1) == 1){
                    XORTemp ^= nums[length - index];
                }
                numTemp >>= 1;
                index++;
            }
            XORSum += XORTemp;
        }
        return XORSum;
    }
}

最快题解

class Solution {
    public int subsetXORSum(int[] nums) {
        int res = 0;
        for(int num:nums){
            res |= num;
        }
        return res<<(nums.length - 1);
    }
}

解析

LeetCode