2475. 数组中不等三元组的数目
2475. 数组中不等三元组的数目
给你一个下标从 0 开始的正整数数组 nums
。请你找出并统计满足下述条件的三元组 (i, j, k)
的数目:
0 <= i < j < k < nums.length
nums[i]
、nums[j]
和nums[k]
两两不同 。换句话说:
nums[i] != nums[j]
、nums[i] != nums[k]
且nums[j] != nums[k]
。
返回满足上述条件三元组的数目。
示例 1:
输入:nums = [4,4,2,4,3]
输出:3
解释:下面列出的三元组均满足题目条件:
- (0, 2, 4) 因为 4 != 2 != 3
- (1, 2, 4) 因为 4 != 2 != 3
- (2, 3, 4) 因为 2 != 4 != 3
共计 3 个三元组,返回 3 。
注意 (2, 0, 4) 不是有效的三元组,因为 2 > 0 。
示例 2:
输入:nums = [1,1,1,1,1]
输出:0
解释:不存在满足条件的三元组,所以返回 0 。
提示:
3 <= nums.length <= 100
1 <= nums[i] <= 1000
思路
暴力模拟
暴力解答没什么好说的
暴力模拟优化
前两位相同直接跳过
数组替代哈希表
实质组合,排序后通过 pre × c × (len − pre − c)
pre
: 已遍历不同数值的元素个数c
: 当前遍历相同数值的元素个数len - pre - c
: 未遍历不同数值的元素个数
“简化”成有效的二元数组看待
将三元数组判断转化为两元数组看待,核心代码如下
// 用来统计已经遍历过的数值出现的次数
int[] counts = new int[1001]
// 把之前存在数字一样的两位数组过滤掉
result += two - counts[nums[i]] * (i - counts[nums[i]]);
// 之前可组成的两位不同数组的数目
two += i - counts[nums[i]];
// 数值出现次数+1
counts[nums[i]]++;
例如:{8, 8, 7, 9, 8, 5, 7, 1, 1}
i = 0
nums[i] => 8
result = 0 + 0 - 0 * (0 - 0) => 0
two = 0 + 0 - 0 => 0
counts[8] = 0 + 1 => 1
i = 1
nums[i] => 8
result = 0 + 0 - 1 * (1 - 1) => 0
two = 0 + 1 - 1 => 0
counts[8] = 1 + 1 => 2
i = 2
nums[i] => 7
result = 0 + 0 - 0 * (2 - 0) => 0
two = 0 + 2 - 0 => 2
counts[7] = 0 + 1 => 1
i = 3
nums[i] => 9
result = 0 + 2 - 0 * (3 - 0) => 2
two = 2 + 3 - 0 => 5
counts[9] = 0 + 1 => 1
i = 4
nums[i] => 8
result = 2 + 5 - 2 * (4 - 2) => 3
two = 5 + 4 - 2 => 7
counts[8] = 2 + 1 => 3
i = 5
nums[i] => 5
result = 3 + 7 - 0 * (5 - 0) => 10
two = 7 + 5 - 0 => 12
counts[5] = 0 + 1 => 1
i = 6
nums[i] => 7
result = 10 + 12 - 1 * (6 - 1) => 17
two = 12 + 6 - 1 => 17
counts[7] = 1 + 1 => 2
i = 7
nums[i] => 1
result = 17 + 17 - 0 * (7 - 0) => 34
two = 17 + 7 - 0 => 24
counts[1] = 0 + 1 => 1
i = 8
nums[i] => 1
result = 34 + 24 - 1 * (8 - 1) => 51
two = 24 + 8 - 1 => 31
counts[1] = 1 + 1 => 2
代码
暴力模拟
class Solution {
public int unequalTriplets(int[] nums) {
int res = 0, n = nums.length;
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
for (int k = j + 1; k < n; k++) {
if (nums[i] != nums[j] && nums[i] != nums[k] && nums[j] != nums[k]) {
res++;
}
}
}
}
return res;
}
}
暴力模拟优化
class Solution {
public int unequalTriplets(int[] nums) {
int result = 0;
for (int i = 0; i < nums.length; i++) {
for (int j = i + 1; j < nums.length; j++) {
if (nums[i] == nums[j]) {
continue;
}
for (int k = j + 1; k < nums.length; k++) {
if (nums[i] == nums[k] || nums[j] == nums[k]) {
continue;
}
result++;
}
}
}
return result;
}
}
数组替代哈希表
class Solution {
public int unequalTriplets(int[] nums) {
int result = 0;
int[] counts = new int[1001];
for (int num : nums) {
counts[num]++;
}
int pre = 0;
int len = nums.length;
for (int count : counts) {
if (count == 0) {
continue;
}
result += pre * count * (len - pre - count);
pre += count;
}
return result;
}
}
“简化”成有效的二元数组
class Solution {
public int unequalTriplets(int[] nums) {
int result = 0;
int two = 0;
int[] counts = new int[1001];
for (int i = 0; i < nums.length; i++) {
// 把之前存在数字一样的两位数组过滤掉
result += two - counts[nums[i]] * (i - counts[nums[i]]);
// 之前可组成的两位不同数组的数目
two += i - counts[nums[i]];
counts[nums[i]]++;
}
return result;
}
}